
Appendix to Tail Risk Interdependence

1. Joint tails and the tail interdependence structure

Let N = {1, ..., n} be a finite set and F a continuous joint CDF (PDF f) of

a vector X = (X1, ...,Xn) of n random variables with the support on Rn. For the

strictly increasing marginal CDF Fi, i ∈ N , and the nominal level α ∈ (0, 1), the left

and the right tail with the density mass α under Fi are defined, respectively, as

Tαi (−1) = {xi ∈ R : xi ≤ F
−1
i (α)}, Tαi (1) = {xi ∈ R : xi ≥ F

−1
i (1− α)}.

The joint tail (JT) TαC (d) ⊆ R
n in direction d ∈ {−1, 1}n for the subset C ⊆ N and

at the nominal level α ∈ (0, 1) generalizes the unidimensional tails,

TαC (d) =
�
i∈C T

α
i (di)×

�
i∈N\C R\T

α
i (di),

i.e., TαC (d) is the Cartesian product of univariate tails and their complements. We

refer to upper (or positive) JTs when d = 1 = (1, ..., 1) and to lower (or negative)

JTs when d = −1. Otherwise, we call the JTs mixed. Importantly for our purposes,

the joint tails TαC (d) and TαB(d) are disjoint ifC �= B. Therefore, the superset

T α(d) = {TαC (d) : C ⊆ N} partitions the outcome space into 2n (the number of all

subsets of N ) regions.

For a partition T α(d) and a joint PDF f , we define the tail interdependence struc-

ture (TIS) uα(f,d) = (uαC(f,d))C⊆N as an 2n-dimensional vector, where uαC(f,d) is

the probability mass of the JT TαC (d) under f . When there is no risk of confusion,

we write T α, TαC and uα instead of T α(d), TαC (d) and uα(f,d), respectively. Clearly,

u
α is a (discrete) PDF as T α is a partition of the sample space.
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1.1. Definition and Properties of the CTI

The interdependence of the JTs captured by the TIS uα is fully defined by the

multi-information (MI) (Cover and Thomas, 2006),

D(uα||πα) =
�
C⊆N

uαC ln
uαC
παC
, (1)

where πα = (παC)C⊆N is the corresponding TIS under tail independence, παC =

α#C(1 − α)n−#C is the probability of the JT TαC under tail independence (com-

puted as the product of marginal probabilities of #C exceedances and n − #C

non-exceedances) and #C is the cardinality of set C. Note that D(uα||πα) is well-

defined as παC > 0 for all α ∈ (0, 1) and C ⊆ N . We normalize MI to obtain the

coefficient of tail interdependence (CTI),

κ(uα) =
D(uα||πα)

(1− n) lnαα(1− α)1−α
(2)

where the denominator is a normalization factor derived in the subsection 1.2.

The CTI (2) has the following properties. Firstly, it lies in the unit interval. In

particular, κ(uα) = 0 when all exceedances are mutually independent and κ(uα) = 1

in the case of perfect dependence, i.e., when all n variables always exceed together

their respective thresholds. Secondly, the CTI is scale invariant under strictly in-

creasing transformations of the underlying variables in X. Specifically, if each ξi(Xi)

is an increasing and continuous function, then the CTI computed from the trans-

formed variables ξ(X) = (ξi(Xi))i=1,...,n is the same as that computed from X. This

property follows by the construction of the TIS from the quantiles of the variables

in X as the same events fall into a JT TαC under X and under ξ(X). Further, by

the construction of the TIS, the CTI is robust to outliers and is invariant under the

permutation of the random variables in X.

In empirical applications, the CTI computation time increases linearly in the
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product of the sample size T and the dimension n of each observation. However,

the CTI will overestimate the tail interdependence if the sample size is below the

order of 2n (the number of JTs for n random variables). Below, we show that the

decomposition of the CTI into systemic and residual component circumvents the

latter problem.

1.2. Systemic and residual tail interdependence

For a given TIS uα, we define the systemic TIS as the (n+1)−dimensional vector

�uα = (�uαk )nk=0 where,

�uαk =
�

C⊆N :#C=k u
α
C ,

is the probability of observing k = 0, ..., n tail events. In the special case of mutual

independence of tail events, we denote the systemic TIS by �πα = (�παk )nk=0, where

�παk =
�

C⊆N :#C=k α
k(1− α)n−k =

�
n

k

�
αk(1− α)n−k.

From the TIS u
α, we compute also the conditional probabilities of JTs uα,k =

(uαC/�uαk )C⊆N :#C=k given that k exceedances have occurred. Similarly, we compute

the conditional probabilities πα,k = (παC/�παk )C⊆N :#C=k from the PDF π
α for each

k = 0, ..., n. The total KL divergence D(uα||πα) can be decomposed as follows.

D(uα||πα) = D(�uα||�πα) +
�n

k=0 �uαkD(uα,k||πα,k). (3)

In order to prove the decomposition in (3), we calculate,

D(uα||πα)−D(�uα||�πα) =
�

C⊆N u
α
C ln

uαC
παC

−
�n

k=0 �uαk ln
�uαk
�παk

(4)

=
�n

k=0

�
C⊆N :#C=k u

α
C ln

uαC
παC

−
�n

k=0 �uαk ln
�uαk
�παk

=
�n

k=0 �uαk
��

C⊆N :#C=k

�
uαC
�uαk
ln
uαC
παC

�
− ln

�uαk
�παk

�
.
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As
�

C⊆N :#C=k u
α
C/�uαk = 1, we can write the last expression as,

�n

k=0 �uαk
��

C⊆N :#C=k

�
uαC
�uαk
ln
uαC
παC

−
uαC
�uαk
ln
�uαk
�παk

��
= (5)

�n

k=0 �uαk
�

C⊆N :#C=k

�
uαC
�uαk
ln
uαC/�uαk
παC/�παk

�
=
�n

k=0 �uαkD(uα,k||�π
α,k),

which completes the proof of the decomposition in (3).

The measure D(�uα||�πα) quantifies the systemic tail interdependence, i.e., the

divergence between the distributions �uα and �πα of the total number of exceedances

under uα and under πα (i.e., under tail independence), respectively. On the other

hand, each KL divergence D(uα,k||πα,k) quantifies the conditional interdependence

among subsets of variables, given that k exceedances have occurred.

In analogy to the CTI (2), we define the systemic and residual CTIs as, respec-

tively,

�κ(uα) = D(�uα||�πα)
(1− n) lnαα(1− α)1−α

, κk(uα) =
D(uα,k||πα,k)

(1− n) lnαα(1− α)1−α
, (6)

and show below that

κ(uα) = �κ(uα) +
�n

k=0 �uαkκk(uα), (7)

0 ≤ �κ(uα) ≤ κ(uα) ≤ 1,

with �κ(uα) = κ(uα) = 0 in the case of tail independence and �κ(uα) = κ(uα) = 1 for

perfect dependence (i.e., when all exceedances always occur together).

In order to prove (7), we divide both sides of the Equation (3) by−(n−1) lnαα(1−

α)1−α > 0 for 0 < α < 1, which yields the decomposition of the CTI,

κ(uα) = �κ(uα) +
�n

k=0 �uαkκk(uα).

4



We note that κ(uα) ≥ �κ(uα) ≥ 0 follows from the non-negativity of �κ(uα) and κk(uα)

as the KL divergence is always non-negative (Cover and Thomas, 2006). Finally, from

the results in Cover and Thomas (2006) it follows that,

D(uα||πα) =
�

C⊆N u
α
C ln u

α
C − n lnα

α(1− α)1−α;

− lnαα(1− α)1−α ≤ −
�

C⊆N u
α
C lnu

α
C ≤ −n lnα

α(1− α)1−α,

which implies

n lnαα(1− α)1−α −
�

C⊆N u
α
C lnu

α
C

(n− 1) lnαα(1− α)1−α
=

−D(uα||πα)

(n− 1) lnαα(1− α)1−α
= κ(uα) ∈ [0, 1].

(8)

For an empirical TIS �uα, the total divergence D(�uα||πα), and thus the CTI κ(�uα), is

not estimated accurately in high dimensions when there are no sufficient observations

in all joint tails. For example, for n = 30, there are 230 (over one billion) joint tails,

which vastly exceeds the usual sample sizes. However, this is not a problem for the

systemic interdependence measure D(��u
α

||�πα) and the systemic CTI �κ(��u
α

), as both

of which are based on the distribution of the total number (between 0 and n) of

exceedances.

1.3. Goodness-of-Fit and Independence tests

Recall that T α is a partition of the sample space of the n−dimensional random

vector X = (X1, ..., Xn) into 2n joint tails and that the TIS uα is a PDF over T α. An

empirical TIS �uα = (�uαC)C⊆N contains the relative frequencies of observations that

fall into the JTs TαC ∈ T
α. We use �uα to test whether the observed interdependence

structure comes from a hypothesized PDF f , which produces the TIS uα. For this
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purpose, we compute the KL divergence D(�uα||uα),1

D(�uα||uα) =
�

C⊆N �uαC ln
�uαC
uαC

. (9)

If exceedances are mutually independent under f , this procedure boils down to a

test of tail independence. In the latter case, the hypothesized TIS is πα and (9) is

proportional to the CTI (2),

D(�uα||πα) = (1− n) lnαα(1− α)1−ακ(�uα). (10)

Our goodness-of-fit test with the mutual independence test as a special case, is

conditional on sufficient statistics estimated from the data (e.g., on the estimates of

quantiles in the sample). For the conditional test, the asymptotic distribution of the

test statistic 2 ·T ·D(�uα||uα), where T is the sample size, follows the χ2-distribution

with d degrees of freedom (e.g., McCullagh, 1986). For the degrees of freedom, we

observe that we have 2n outcomes (JTs) and n + 1 restrictions on probabilities or

frequencies of these outcomes: these probabilities must sum up to one and, moreover,

�
C⊆N :i∈C u

α
C =

�
C⊆N :i∈C �uαC = α, ∀i = 1, ..., n.

Therefore, we apply d = 2n − n− 1 degrees of freedom in our goodness-of-fit tests.

Alternatively, we can use the systemic observed TIS ��u
α

and the systemic theoret-

ical TIS �uα to compute the KL divergence D(��u
α

||�uα). In this case, 2 · T ·D(��u
α

||�uα)

is distributed approximatly as χ2 with d = n − 1 degrees of freedom as there are

1The Goodness-of-Fit and the interdependence symmetry test below can be only conducted
when the test statistic is well-defined, i.e., when all denominators in (9) are strictly positive.
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n+ 1 outcomes and two restrictions on probabilities of these outcomes,

�n

k=0 �uαk = 1, and
�n

k=0 k�uαk = nα.

1.4. Interdependence symmetry test

Another interesting question is whether two tail interdependence structures along

two directional vectors d+ and d− (e.g., negative and positive tails) are symmetric.

Specifically, let �uα+ = (�uα+C )C⊆N and �uα− = (�uα−C )C⊆N be two empirical TISs com-

puted for d+ and d−, respectively. Our objective is to test whether �uα+ and �uα−

were generated by a process with an identical tail interdependence structure. In

order to test the null uα+ = uα−, we apply the Kullback—Leibler test statistic,

KL± =
�

C⊆N T
+�uα+k ln

�uα+C
�uαC

+
�

C⊆N T
−�uα−C ln

�uα−C
�uαC
,

where,

�uαC =
(T+�uα+C + T−�uα−C )

T+ + T−
,

and T+ (T−) is the size of the sample from which �uα+ (�uα−) have been computed.

The asymptotic distribution of 2·KL± follows the χ2-distribution with 2n−1 degrees

of freedom (e.g., Quine and Robinson, 1985). We refer to this procedure as the

interdependence symmetry test.2 Alternatively, the statistic KL± can be computed

from the systemic TIS, in which case 2 · KL± follows the χ2-distribution with n

degrees of freedom.

2Alternatively, we can test the null with a generalized version of the Fisher’s exact test (Mehta
and Hilton, 1993).
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2. Further discussion on "Comparison with alternative tail dependence

measures"

2.1. Non-parametric bivariate measure proposed by Poon et al (2004)

Poon et al. (2004) propose a bivariate framework to examine tail dependence

structure. They distinguish between asymptotic dependence and independence struc-

tures by constructing two non-parametric estimators, χ and χ̄, which measure tail

dependence when two variables are respectively asymptotically dependent and as-

ymptotically independent. The pair of dependence measures (χ, χ̄) provides all the

necessary information for characterising the form and the degree of extremal depen-

dence. A researcher should first test if χ̄ = 1. If the hypothesis is not rejected,

the variables are asymptotically dependent with tail dependence given by χ and the

result presented as (χ,1). Otherwise, the variables are asymptotically independent

with tail dependence measured by χ̄ and the result presented as (0, χ̄). For full

technical details see Poon et al. (2004).

Since this is a bivariate measure, in the interest of space we only report results

for Apple (AA) with the remaining 29 stock returns. The results for the other pairs

are qualitatively similar and available upon request. Table 1 reports tail dependence

measure χ̄ (pairs displaying asymptotic dependence are marked with an asterisk)

whereas Table 2 reports tail dependence measure χ. A couple of observations are

in order. At the 5th quantile, only 8 out of the 29 pairs (27% of all pairs) exhibit

asymptotic dependence. This result is consistent with of Poon et al (2004) who

find that only 15% of their market return pairs display asymptotic dependence. For

those pairs exhibiting asymptotic dependence, there is about 30-40% probability that

they experience large positive or negative returns, as manifested by the χ coefficient

estimated in the range of 0.3 to 0.4. The evidence shows that the left tail is thicker

than the right tail. In terms of χ̄, 60% and 90% of the pairs show higher dependence

respectively at the 5th and 10th quantiles in the left tail. In addition, more pairs of
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returns exhibit asymptotic dependence in the left tail than in the right tail at the

5% quantile (eight pairs versus three pairs).

2.2. Parametric high-dimensional factor copula model proposed by Oh and Patton

(2017)

Oh and Patton (2017) propose a factor copula model which allows for a fat-tailed

common factor to capture the possibility of correlated crashes and an asymmetric

distribution to model potential differences in dependence during downturns and up-

turns. Each of the series may carry different factor coefficients which, using results

from extreme value theory, can be used to derive the tail dependence implied by

the copula. Since factor models do not have a closed-form likelihood, the model is

estimated with the simulated method of moments and is computationally intensive.

See Oh and Patton (2017) for full technical details.

We follow Oh and Patton (2017) by estimating a factor skew t-t model, allowing

for one common factor in our estimation. We also classify the DJ30 returns into six

industries based on their SIC code.3 Firms with the same first digit in the SIC code

share the same factor coefficient. Table 4 reports the estimated model coefficients.

The estimates suggest that the residuals of DJ30 exhibit fat tails (as manifested

by the degree of freedom parameter ν of the t-distribution which is close to 2.5)

and that the distribution is left-skewed (as manifested by the statistically significant

negative coefficient). We also observe large positive coefficients β for each industry,

in line with the findings of Oh and Patton (2017).

Following Oh and Patton (2017), we then compute lower and upper tail depen-

dence based on the estimated factor skew t-t model and report the results in Table

3Eight firms belong to SIC2 (Manufacturing: food, furniture): DD, JNJ, KO, MO, MRK, PFE,
PG, XOM; nine firms belong to SIC3 (Manufacturing: electricity, machinery): AA, BA, CAT, GE,
HON, HPQ, INC, MMM, UTX; three firms belong to SIC4 (Transportation, communications):
DIS, ATT, VZ; three firms belong to SIC5 (Trade): HD, MCD, WMT; five firms belong to SIC6
(Finance, Insurance): AIG, AXP, C, JPM, TRV; two firms belong to SIC7 (Services): IBM, MSFT.
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5. The results suggest a clear asymmetry in dependence: industries display stronger

dependence in the lower tail than in the upper tail. For example, in the lower tail,

at the 5% quantile the dependence coefficient lies between 0.3 and 0.5, as opposed

to the range and 0.2 and 0.4 in the upper tail.

In order to compare the results from Poon et al. (2004) and Oh and Patton

(2017) with our measure of tail dependence, we report analogous results using CTI

in Table 3 and in Table 6, respectively. We observe that all three models deliver

qualitatively similar results. In particular, they show that dependence is stronger

in the negative tails, not only across pairs of returns but also across industries, and

that it increases when tails become more extreme, i.e. for lower α’s.
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Table 1: Tail dependence χ̄ of pairs of DJ30 constituents and Apple with the Poon et al. (2004)

Left Tail Quantile Right Tail Quantile
5% 10% 20% 20% 10% 5%

AIG 0.71 0.86 0.77 0.58 0.60 0.73
AXP 0.89* 0.81 0.76 0.68 0.74 0.82*
BA 0.80* 0.74 0.69 0.58 0.60 0.63
C 0.90* 0.85* 0.80 0.60 0.60 0.76

CAT 0.80* 0.79 0.79 0.76 0.85* 0.97*
DD 0.89* 0.81 0.81 0.74 0.82 0.87*
DIS 0.68 0.79 0.72 0.61 0.60 0.70
GE 0.86* 0.86* 0.84 0.69 0.72 0.68
HD 0.59 0.60 0.58 0.58 0.58 0.67

HON 0.77 0.77 0.79 0.61 0.69 0.63
HPQ 0.56 0.61 0.65 0.53 0.49 0.44
IBM 0.58 0.56 0.60 0.55 0.54 0.55
INC 0.48 0.53 0.62 0.53 0.54 0.61
JNJ 0.54 0.50 0.53 0.42 0.36 0.50
JPM 0.79* 0.80 0.78 0.61 0.65 0.73
KO 0.57 0.56 0.53 0.46 0.37 0.48)

MCD 0.50 0.47 0.51 0.41 0.42 0.45
MMM 0.69 0.78 0.73 0.70 0.77 0.78
MO 0.42 0.42 0.48 0.42 0.36) 0.35

MRK 0.60 0.57 0.57 0.48 0.51 0.66
MSFT 0.54 0.56 0.60 0.55 0.54 0.63
PFE 0.61 0.57 0.55 0.50 0.51 0.58
PG 0.43 0.45 0.45 0.43 0.38 0.53

ATT 0.61 0.64 0.59 0.53 0.61 0.70
TRV 0.75 0.72 0.66 0.52 0.57 0.62
UTX 0.74 0.73 0.75 0.67 0.68 0.72
VZ 0.64 0.66 0.59 0.52 0.55 0.54

WMT 0.31 0.47 0.46 0.45 0.46 0.48
XOM 0.84* 0.79 0.71 0.66 0.66 0.73

Note: Tail dependence measure χ̄ for each pair of returns with AA assuming that the

pair of returns are asymptotically independent. Those pairs indicated with an asterisk

* do not reject the null hypothesis of χ̄ = 1 and hence are asymptotically dependent;

their tail dependence measure is given by χ in Table 2. Otherwise, the pair is considered

asymptotically independent and its co-dependence is given by χ̄. The results are estimated

with the residuals of the regression for the DJ30 returns on the first FFC factor. Refer to

Poon et al. (2004) for details.
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Table 2: Tail dependence χ of pairs of DJ30 constituents and Apple with the Poon et al. (2004)

Left Tail Quantile Right Tail Quantile
5% 10% 20% 20% 10% 5%

AXP 0.35 N.A. N.A. N.A. N.A. 0.33
BA 0.34 N.A. N.A. N.A. N.A. N.A.
C 0.37 0.40 N.A. N.A. N.A. N.A.

CAT 0.39 N.A. N.A. N.A. 0.40 0.37
DD 0.39 N.A. N.A. N.A. N.A. 0.37
GE 0.39 0.41 N.A. N.A. N.A. N.A.

JPM 0.37 N.A. N.A. N.A. N.A. N.A.
XOM 0.34 N.A. N.A. N.A. N.A. N.A.

Note: Tail dependence measure χ for each pair of returns with AA assuming that the pair

of returns are asymptotically dependent. The results are estimated with the residuals of

the regression for the DJ30 returns on the first FFC factor. Refer to Poon et al. (2004)

for details.
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Table 3: Tail dependence of pairs of DJ30 constituents and Apple with CTI measure

Left Tail Quantile Right Tail Quantile
5 10% 20% 20% 10% 5%

AIG 0.11 0.1 0.06 0.03 0.05 0.05
AXP 0.11 0.08 0.06 0.05 0.08 0.07
BA 0.11 0.08 0.06 0.04 0.04 0.04
C 0.13 0.1 0.08 0.04 0.05 0.07

CAT 0.12 0.12 0.1 0.08 0.11 0.14
DD 0.15 0.13 0.1 0.08 0.1 0.11
DIS 0.09 0.07 0.06 0.04 0.05 0.06
GE 0.13 0.12 0.09 0.06 0.07 0.09
HD 0.07 0.06 0.04 0.03 0.04 0.06

HON 0.13 0.11 0.08 0.06 0.07 0.07
HPQ 0.07 0.06 0.05 0.04 0.03 0.04
IBM 0.05 0.05 0.05 0.04 0.04 0.04
INC 0.05 0.05 0.05 0.03 0.03 0.05
JNJ 0.03 0.03 0.03 0.01 0.02 0.02
JPM 0.11 0.09 0.07 0.05 0.06 0.08
KO 0.04 0.04 0.03 0.02 0.02 0.02

MCD 0.03 0.03 0.03 0.02 0.02 0.02
MMM 0.1 0.09 0.07 0.06 0.08 0.11
MO 0.03 0.02 0.03 0.02 0.02 0.01

MRK 0.05 0.04 0.03 0.02 0.04 0.04
MSFT 0.05 0.05 0.04 0.03 0.03 0.04
PFE 0.05 0.04 0.03 0.02 0.03 0.02
PG 0.03 0.02 0.03 0.01 0.01 0.02

ATT 0.06 0.05 0.04 0.02 0.04 0.04
TRV 0.06 0.05 0.03 0.02 0.03 0.03
UTX 0.11 0.1 0.09 0.06 0.06 0.09
VZ 0.06 0.05 0.03 0.02 0.02 0.03

WMT 0.01 0.03 0.03 0.02 0.02 0.02
XOM 0.09 0.08 0.06 0.05 0.06 0.07

Note: CTI dependence measure χ̄ for each pair of returns with AA, estimated with the

residuals of the regression for the DJ30 returns on the first FFC factor. Refer to the main

text for details.
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Table 4: Model coefficients of the factor copula model based on Oh and Patton (2017) estimated
with DJ30 constituents

Estimate Std Error

ν−1 0.41 0.024
λ -0.05 0.022

βSIC2 0.71 0.015
βSIC3 0.81 0.017
βSIC4 0.86 0.023
βSIC5 0.76 0.020
βSIC6 0.94 0.023
βSIC7 0.87 0.030

Note: This table reports the model estimates of the skew t-t factor copula model proposed

by Oh and Patton (2017), using the residuals of the regression for the DJ30 returns on the

first FFC factor. The parameter ν−1 corresponds to the inverse of the degree of freedom

of the t-distribution, λ measures the skewness of the t-distribution (a negative coefficient

indicates the distribution skewing to the left), and β refers to the factor coefficients for

each industry.
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Table 5: Lower\ Upper dependence coefficients among six industries based on Oh and Patton (2017)

Panel A: 5% quantile
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.26 0.26 0.26 0.26 0.26
SIC3 0.33 0.33 0.29 0.33 0.33
SIC4 0.33 0.41 0.29 0.36 0.36
SIC5 0.33 0.36 0.36 0.29 0.29
SIC6 0.33 0.41 0.44 0.36 0.27
SIC7 0.33 0.41 0.44 0.36 0.45

Panel B: 10% quantile
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.29 0.29 0.29 0.29 0.29
SIC3 0.36 0.34 0.31 0.34 0.34
SIC4 0.36 0.43 0.31 0.37 0.37
SIC5 0.36 0.39 0.39 0.31 0.31
SIC6 0.36 0.43 0.46 0.39 0.38
SIC7 0.36 0.43 0.46 0.39 0.47

Panel C: 20% quantile
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.32 0.32 0.32 0.32 0.32
SIC3 0.40 0.37 0.34 0.37 0.37
SIC4 0.40 0.45 0.34 0.39 0.39
SIC5 0.40 0.42 0.42 0.34 0.34
SIC6 0.40 0.45 0.48 0.42 0.40
SIC7 0.40 0.45 0.48 0.42 0.48

Panel D: 30% quantile
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.35 0.35 0.35 0.35 0.35
SIC3 0.44 0.39 0.37 0.39 0.39
SIC4 0.44 0.47 0.37 0.41 0.41
SIC5 0.44 0.45 0.45 0.37 0.37
SIC6 0.44 0.47 0.49 0.45 0.41
SIC7 0.44 0.47 0.49 0.45 0.50

Note: Tail dependence implied by the Factor skew t-t model of Oh and Patton (2017),

using the residuals of the regression for the DJ30 returns on the first FFC factor. The

lower (upper) triangular entries correspond to dependence coefficients in the left (right)

tail.
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Table 6: Lower\ Upper tail dependence coefficients among six industries based on CTI measure

Panel A: 5% quantile
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.17 0.15 0.12 0.14 0.09
SIC3 0.20 0.17 0.13 0.24 0.17
SIC4 0.16 0.17 0.13 0.17 0.11
SIC5 0.16 0.14 0.12 0.14 0.10
SIC6 0.15 0.25 0.15 0.11 0.12
SIC7 0.12 0.15 0.10 0.11 0.09

Panel B: 10% quantile
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.16 0.15 0.12 0.14 0.08
SIC3 0.19 0.13 0.12 0.32 0.17
SIC4 0.15 0.16 0.07 0.12 0.08
SIC5 0.15 0.16 0.14 0.12 0.08
SIC6 0.14 0.24 0.12 0.13 0.10
SIC7 0.10 0.17 0.09 0.10 0.09

Panel C: 20% quantile
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.16 0.13 0.12 0.13 0.09
SIC3 0.16 0.12 0.13 0.18 0.14
SIC4 0.13 0.13 0.09 0.12 0.07
SIC5 0.14 0.13 0.11 0.12 0.09
SIC6 0.14 0.20 0.13 0.12 0.09
SIC7 0.10 0.17 0.09 0.09 0.09

Panel D: 30% quantile
SIC2 SIC3 SIC4 SIC5 SIC6 SIC7

SIC2 0.14 0.11 0.10 0.10 0.07
SIC3 0.15 0.11 0.12 0.15 0.13
SIC4 0.13 0.12 0.08 0.10 0.06
SIC5 0.13 0.13 0.09 0.12 0.07
SIC6 0.12 0.18 0.11 0.10 0.08
SIC7 0.10 0.16 0.09 0.09 0.10

Note: Tail dependence implied by CTI measure, using the residuals of the regression for

the DJ30 returns on the first FFC factor. The lower (upper) triangular entries correspond

to dependence coefficients in the left (right) tail. Refer to the main text for details.
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